Coevolution of quasispecies: B-cell mutation rates maximize viral error catastrophes.
نویسندگان
چکیده
Coevolution of two coupled quasispecies is studied, motivated by the competition between viral evolution and adapting immune response. In this coadaptive model, besides the classical error catastrophe for high virus mutation rates, a second "adaptation" catastrophe occurs, when virus mutation rates are too small to escape immune attack. Maximizing both regimes of viral error catastrophes is a possible strategy for an optimal immune response, reducing the range of allowed viral mutation rates to a minimum. From this requirement, one obtains constraints on B-cell mutation rates and receptor lengths, yielding an estimate of somatic hypermutation rates in the germinal center in accordance with observation.
منابع مشابه
Periodic versus intermittent adaptive cycles in quasispecies coevolution.
We study an abstract model for the coevolution between mutating viruses and the adaptive immune system. In sequence space, these two populations are localized around transiently dominant strains. Delocalization or error thresholds exhibit a novel interdependence because immune response is conditional on the viral attack. An evolutionary chase is induced by stochastic fluctuations and can occur ...
متن کاملQuasispecies Analyses of the HIV-1 Near-full-length Genome With Illumina MiSeq
Human immunodeficiency virus type-1 (HIV-1) exhibits high between-host genetic diversity and within-host heterogeneity, recognized as quasispecies. Because HIV-1 quasispecies fluctuate in terms of multiple factors, such as antiretroviral exposure and host immunity, analyzing the HIV-1 genome is critical for selecting effective antiretroviral therapy and understanding within-host viral coevoluti...
متن کاملInformation catastrophe in RNA viruses through replication thresholds.
RNA viruses are known to replicate at very high mutation rates. These rates are actually known to be close to their so-called error threshold. This threshold is in fact a critical point beyond which genetic information is lost through a so-called error catastrophe. However, the transition from a stable quasispecies to genetic drift and loss of information can also occur by crossing replication ...
متن کاملGenetic instability and the quasispecies model.
Genetic instability is a defining characteristic of cancers. Microsatellite instability (MIN) leads to by elevated point mutation rates, whereas chromosomal instability (CIN) refers to increased rates of losing or gaining whole chromosomes or parts of chromosomes during cell division. CIN and MIN are, in general, mutually exclusive. The quasispecies model is a very successful theoretical framew...
متن کاملStochastic Simulations Suggest that HIV-1 Survives Close to Its Error Threshold
The use of mutagenic drugs to drive HIV-1 past its error threshold presents a novel intervention strategy, as suggested by the quasispecies theory, that may be less susceptible to failure via viral mutation-induced emergence of drug resistance than current strategies. The error threshold of HIV-1, μ c, however, is not known. Application of the quasispecies theory to determine μ c poses signific...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 88 6 شماره
صفحات -
تاریخ انتشار 2002